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Abstract—Smiling plays a crucial role in human communica-
tion. It is the most frequent expression shown in daily life. Smile
analysis usually employs computer vision-based methods that use
data sets annotated by experts. However, cameras have space
constraints in most realistic scenarios due to occlusions. Wearable
electromyography is a promising alternative; however, issue of
user comfort is a barrier to long-term use. Other wearable-based
methods can detect smiles, but they lack consistency because they
use subjective criteria without expert annotation.

We investigate a wearable-based method that uses optical
sensors for consistent smile intensity estimation while reducing
manual annotation cost. First, we use a state-of-art computer
vision method (OpenFace) to train a regression model to esti-
mate smile intensity from sensor data. Then, we compare the
estimation result to that of OpenFace. We also compared their
results to human annotation. The results show that the wearable
method has a higher matching coefficient (r=0.67) with human
annotated smile intensity than OpenFace (r=0.56). Also, when the
sensor data and OpenFace output were fused, the multimodal
method produced estimates closer to human annotation (r=0.74).
Finally, we investigate how the synchrony of smile dynamics
among subjects and their average smile intensity are correlated
to assess the potential of wearable smile intensity estimation.

Index Terms—wearable computing, affective computing, smart
eyewear, optical sensors, smile intensity estimation

I. INTRODUCTION

Humans are social animals. Nonverbal cues, such as facial
expressions, play an important role in social communication.
In particular, smiling is frequent in daily life, not only as
a happy emotion, but also as a means to mediate social
relationships [1]. The positive and social effect of smiling at
others or oneself is applied in the area of affective comput-
ing [2] and human-computer interaction to improve human
well-being. Tsujita and Rekimoto developed a device that
stimulates smiling to produce a positive mental effect on
the user [3]. Nakazato et al. studied the effect of computer-
assisted deformation of users’ facial expressions to make them
appear to be smiling during a remote brainstorming session to
enhance creativity [4]. Other applications include evaluating
video content preferences [5]; extracting important scenes in
life-logging videos [6]; and promoting the sharing of smiles
between children with autism spectrum disorders (ASD) and
their parents and supporters [7].

978-1-6654-5908-2/22/$31.00 ©2022 IEEE

Sensor Data Predict

Train a model

e@
Compare m
Human Judges

Estimated smile
intensity

Computer Vision Predict

Fig. 1. Concept of our work. First, we use a state-of-art computer vision
method to train a regression model to estimate smile intensity from wear-
able optical sensors. Then, we compare the estimation results. Finally, we
compared the results to human annotation.

It is, of course, important to decode the meaning of a smile.
The predominant approach is based on the Facial Action Cod-
ing System (FACS) [8]. FACS enables an objective description
of visible facial movements by action units (AUs) that corre-
spond to the movement of specific facial muscles or groups
of muscles. The AU12 (Lip Corner Puller, the activation of
the Zygomaticus Major muscle) is the prototypical movement
present in every smile. Besides labeling the presence of one
or more AUs, FACS describes facial expressions in terms of
their AU intensity. Intensity is coded according to the degree of
muscle contraction using a six-level scale, including absence.
The dynamics of smile intensity are useful for understanding
the implications of smiles [9]-[11].

Since the manual annotation of AUs is time-consuming and
cumbersome, automatic approaches by computer vision (CV)
have emerged. CV researchers have achieved high accuracy in
basic emotion recognition, including smiles and AU detection
in controlled conditions, as confirmed by comparison to an-
notations by experts. However, recognizing facial expressions
in natural environments remains challenging due to privacy
concerns, occlusions, and facial direction and positioning.

Electromyography (EMG) has long been used to measure
facial expressions. The advantage of the method is that it
can recognize subtle expressions by placing electrodes on
the skin directly above the facial muscles to be measured.



However, placing many electrodes on the face is seldom
accepted in everyday situations. For this reason, attempts
have been made to recognize facial expressions by placing
electrodes on more insignificant parts of the face. For instance,
distal EMG sensors are a promising wearable alternative to
the CV-based approach as their recognition performance is
comparable with that of CV [12]. However, concerns about
the long term comfort of the device remain as it is directly in
contact with the skin surface. In addition, the signal is sensitive
to changes in electrode position and skin conditions, such as
individual differences and device reattachment, making stable
measurement difficult.

Optical sensors combine the properties of CV and EMG sen-
sors. They enable wearable measurement with simple configu-
ration and high wearing comfort. In fact, optical sensors have
been used for both recognizing basic facial expressions [13]
and estimating the intensity and genuineness of facial expres-
sions [6], [14]. However, annotation consistency remains a
problem as annotation was by non-experts. Furthermore, no
comparison or combination with CV-based methods has been
investigated. The comparison is important to indirectly utilize
the human annotation from CV to understand and handle
sensor characteristics in smile intensity estimation. Wearable
optical sensors that can well estimate smile intensity will
expand the range of everyday application, such as monitoring
the wearer’s mood, aiding communication for people with
ASD, and ambulatory analysis of smile in social interactions.

This study attempts to estimate smile intensity consistently
and continuously by using photo-reflective sensors on smart
eyewear while minimizing manual annotation costs. The sen-
sors measure the skin deformation caused by facial muscle
activity from reflective intensity. We use the dataset from [14]
which includes the sensor data from smart eyewear and a video
of facial expressions while the participants watched a comedy
video. First, we annotated smile intensity using OpenFace [15],
[16], state-of-the-art in CV AU intensity estimation. Then, we
built a multiple regression model with OpenFace’s AU12 in-
tensity as the explained variable for smile intensity and sensor
data as the explanatory variable to predict smile intensity from
sensor data. Next, we compared this sensor-based method to
OpenFace. Then, we determined whether the sensor-based or
OpenFace estimates were closer to smile intensity as annotated
by humans. Finally, we performed a case analysis of smiles
in the dataset to show the potential of the method.

The key findings are: 1) The sensor data-based estimates
and OpenFace output were highly correlated (r=0.93 on aver-
age). This result shows that smile intensity can be estimated
consistently by wearable optical sensors with at least as much
accuracy as OpenFace. 2) Human annotation revealed that the
sensor-data-based estimates were closer to annotated smile
intensity than those of OpenFace. In particular, the sensor-
based estimate is better under face occlusion and when the
participants smile with a closed mouth like a chuckle and a
subtle smile. 3) We analyzed how the synchronicity of smile
dynamics among subjects and their average smile intensity are
correlated. If smile dynamics were similar, their smile intensity

increased.

This paper offers a new contribution to the field of wearable
smile intensity estimation: 1) targeting spontaneous smiles
using photo reflective sensors, 2) comparing the intensity of
smiles with CV-based state-of-art methods, and 3) showing
that wearable methods can estimate smile intensity consis-
tently and continuously by utilizing the OpenFace annotation.

II. RELATED WORK

This section summarizes the methods of smile detection and
the intensity estimation from the sensor perspective: computer
vision, wearable sensors, and optical sensors.

CV-based methods have been used in many studies of facial
expression analysis, including smiles. Recently, recognizing
subtle changes in smiles has become an active research
topic, such as distinguishing between forced and spontaneous
smiles [10] and estimating the intensity of smiles [17], [18].
However, a camera may not be able to capture facial expres-
sions stably due to obstructions such as hands or due to head
motion of the subject. Therefore, it is not suitable for daily life
situations. In addition, it has difficulty in measuring subtle
expressions. Furthermore, constantly recording by a camera
raises privacy concerns, and the anxiety of being filmed may
prevent natural facial expressions.

Wearable sensors for facial expressions, including smiles,
can overcome these limitations. Many researchers have pro-
posed wearable systems such as EMG for detecting positive
expressions [19], emotional valence [?], subtle smiles [21],
smile-related action units [22], “enjoyment” , “social”
and “masked” smiles for long-term recordings [23], and
classifying posed and spontaneous smiles [24], EOG glasses to
detect upper action units [25], electric field sensing technology
using electrodes on-ear canal [26], capacitive sensors [27],
ultrasonic sensors [28], and optical sensors [6], [13], [14] to
measure facial expression movement. Other studies use the
movement of the abdomen and diaphragm when laughing
and detect it as pressure changes at the abdomen by using
capacitive e-textile [29] or voice [30].

Wearable technologies for estimating the intensity of a
smile or smile-related action units have been investigated.
Rantanen et al. identified three levels of AU12 intensity using
multichannel capacitance measurements based on EMG value
at maximum smile intensity [31]. Iravantchi et al. used an
acoustic interferometry technique with ultrasonic transducers
to estimate an arbitrary 4-level smile intensity that users
found easy to repeat and generate [28]. Yet, these collected
the data of intentional facial expressions under controlled
conditions in a laboratory setting. Spontaneous smiles have
more varied dynamics than posed smiles and contain many
noise factors such as head movements [32]. The method of
Fukumoto et al. [6] detects smile intensity with a simple
system configuration and algorithm, illustrating the potential
of optical sensors. However, the intensity of the ground truth
movement was unclear because their algorithm applied an
arbitrary threshold to cheek and eye muscle movements. In
addition, eye movements alone were not regarded as smiles,



which limits the variations of smiles that can be detected.
It may not be able to detect small smiles. Furthermore, this
method is not suitable for analyzing the dynamics of smiles
because it only provides discrete classification.

Among these methods, optical sensors have great potential
as wearable devices because they are small, highly respon-
sive, offer low processing costs, and high comfort due to
non-contact measurements. Furthermore, the small sensors
can yield socially acceptable devices such as eye-glasses,
enabling private sensing hidden from observers. In addition
to Fukumoto et al.’s method [6], Masai et al. [13] showed
that wearable optical sensors can identify facial expressions
associated with basic emotions, Saito et al. [14] discriminated
between spontaneous and posed smiles, and Asano et al. [33]
reproduced facial expression geometry. Unfortunately, these
studies did not estimate the smile intensity continuously.
Also, no comparison between optical sensors and CV/human
annotation was made in smile intensity estimation. We believe
that a comparison with CV, the most common method for
estimating expression intensity, would clarify the advantages
and disadvantages of the methods and allow us to build a
consistent estimator without human annotation. Of particular
importance, both photo-reflective sensors and cameras measure
optical information and have high data affinity to human vision
perception.

III. DATASET

We used the dataset from [14], which provided time series
data from 16 photo-reflective sensors on smart eyewear and
the concurrent image data when the participants watched a
comedy video that induced smiles and laughter. The data
collection was approved by an ethical committee in Keio
university. First, we describe the recording setup, followed by
a detailed description of the dataset.

Fig. 2 shows the appearance of the device and sensor
layout. The 16 photo-reflective sensors were embedded in
smart eyewear [14]. The photo-reflective sensors consist of
infrared (IR) LEDs and IR phototransistors. The sensors work
as proximity sensors to measure facial expression activity. The
skin deformation caused by facial muscle movements changes
the distance between the sensors on smart eyewear and the
wear’s skin surface. For example, in a smiling expression,
the skin around the cheek is deformed and the distance be-
tween the corresponding sensors and the skin surface becomes
shorter than in a neutral expression. Therefore, the intensity
of the reflection measured by each sensor varies in response
to the muscle movements. We estimate smile intensity from
the sensor features.

Photo-reflective sensor

Fig. 2. Eyewear device and its sensor layout. Source: Adapted from [14].

The data was collected from 12 participants (8 males, 4
females, average age = 25, all Japanese) while watching a 13
minute 28 second comedy video alone. The sensor data from
the eyewear device (30Hz sampling frequency) and image data
(size of 630X320) from the built-in camera of a PC (30 fps)
were recorded. These data were synchronized with the frames
of the viewed video via time stamps. Any missing data were
offset by using the data from one frame earlier. Overall, each
participant yielded 24245 data samples.

Smiling is defined by the FACS as including movements of
AUG6 (Cheek Raiser) and AU12. According to the benchmark
results from Cheong et al. [36], the estimate of AU6 and AU12
from OpenFace [15], [16] is best, with F1 scores of 0.81 and
0.83, respectively. The performance of OpenFace was also
confirmed by Perusquia-Hernandez et al.’s comparison [22].
Therefore, we used OpenFace to output the intensity of AU6
and AU12 for each image frame in the dataset. The correlation
between these two values was high, with an average of 0.934
(SD=0.0357) for the 12 users. OpenFace can estimate an
intensity ranging from O (absent) to 5 (maximum), and we
consider values greater than 1 to be smiling. Since OpenFace
only extracts the intensity of pure facial movements, our study
focus on this definition of intensity.

We used AU12 intensity as the ground truth of smile
intensity of facial features movements, because it is the
prototypical movement that signals a smile. We also expect a
high correlation with AU6, given the sensors’ close proximity
to the eyes, and the nature of smiles. AU6 often co-appears
with smiles, but it not always present. Many researchers define
smile intensity by considering both AUs or only AU12. The
Smiling Intensity Scale [34] by Gironzetti et al. uses these
AUs to classify smile intensity into five categories. Witzig
et al. also classifies smile intensity into four stages [35] to
create a dataset for smile intensity detection by the deep
learning method [18]. Both research present an annotation
scale only on smiles and not laughs. For the data set, trained
coders annotated the intensity by checking AU6 and AUI12
visually. On the other hand, these two AUs are said to co-
occur in expressions of happiness, but AU12 may occur
independently at low intensity [37]. According to Ruan et
al. [38], attention to mouth movement (AU12) improved the
ability to classify spontaneous smiles and posed smiles. Girard
et al. [17] classified the smile intensity using the multi-class
SVM with the results of AU12 annotation from the certified
coder as the ground truth. Moreover, the output of AU6 may
be less accurate due to shielding by the eyewear device.

The comedy video elicited spontaneous smiles and laughter
from the participants, with 40.6% (5 minutes 28 seconds) of
the scenes achieving an AU12 intensity of 1 or greater and
13.8% (1 minute 51 seconds) achieving an AU12 intensity
of 2 or greater on average. The video includes pre-recorded
audience laughter and other reactions to the humorous ma-
terials as a social proof that the materials were funny [39].
Therefore, one of the authors annotated the onset and offset
of the laughter reactions in the video using ELAN [40]. The
laughter reactions were assigned to 71 scenes in the video



footage. The data for two seconds before and after the laugh
tracks showed that the ratio of AU12 intensity 1 or higher was
53.4% and the ratio of AU12 intensity 2 or higher was 22.7%,
which is more laughter than the average for the entire video.

IV. ANALYSIS

The optical sensing method focuses on the facial expression
changes around the eyes during smiling because the device
measures the skin deformation around the eyes. We, however,
selected AU12 as the video-based ground truth, because that
is the distinctive element of a smile. By learning AU12 as the
ground truth, we expect that the sensor-based estimation will
reflect both the eye and mouth areas.

First, we compare this method with the OpenFace output
to see how well the device can estimate smile intensity.
Then, we investigate the differences between the sensor-based
estimation and OpenFace through a qualitative analysis and
human annotation comparisons.

A. How similar is the sensor data and OpenFace output?

We examined the correlation between each of the 16 sensors
and the AU12 intensity of OpenFace to understand the charac-
teristics of the sensors on the device used for data recording.
Fig. 3 shows the correlation coefficients. The six sensors with
average correlation coefficients above 0.7 (sensor numbers:
5, 6, 7, 13, 14, and 15) measured skin deformation from
under the eyes to the cheeks (see Fig. 2 for sensor number
and placement). The correlation coefficient of the sensors
on the upper part of the device with the OpenFace output
was around 0.5 at maximum (sensor numbers: 2, 3, 10, and
11). We observed the individual differences were due to hair
entrapment between the sensors and the skin, the fitting of the
glasses, and the power supply noise.
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Fig. 3. Correlation coefficient between each sensor and AUI12 Output of
OpenFace. The error bar indicates the standard deviation.

We compared the AU12 output of OpenFace to the sensor-
based estimates to evaluate their similarity. First, the values
of each sensor were z-scored in the temporal domain and
compressed into an n-dimensional feature vector using prin-
cipal component analysis (PCA). Next, we made a multiple
linear regression model with this vector as the explanatory
variable and OpenFace’s AUI2 intensity output as the ex-
plained variable. Finally, we segmented the time series data
into five segments and applied one-time segment-leave-out
cross-validation to obtain a sensor-based estimation of smile
intensity. Since most of the training data are facial expression
data without smiles, we classified the training data into eight
levels of smile intensity by 0.5 (0.0-0.5, 0.5-1.0, etc.) and

randomly undersampled the data so that the number of data in
each category was equal to or less than 400. We corrected the
cases where the estimated intensities were negative to zero.

To avoid overfitting, we compared the number of dimen-
sions of the feature vectors reduced by PCA. Fig. 4 shows
the values of the average mean squared error (MSE) of
the estimation (error bars show the maximum and minimum
values out of 12 participants, respectively) when the sensor
data was compressed to 1-15 dimensions. From the figure,
we chose eight dimensions, since the MSEs for all users
were less than 0.1. Fig. 5 shows the maximum of the cross-
correlation between the time series of estimated values and the
AUI12 intensity of OpenFace when training and fitting were
done for each individual. The average correlation was 0.923
(SD=0.043), and the average MSE was 0.065 (SD=0.028).
The cross-correlation showed an average lag of 11.1 ms
(SD=28.3 ms) in the output from the OpenFace compared to
the estimation from the sensors. We considered this lag to be
related to the difference in synchronization or the difference
in the characteristics of smiles, given the standard deviation of
the lag. We do not think it is a difference due to the nature of
the measurement method [22] as is found in the distal facial
EMG approach.
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Fig. 4. MSE between sensor-based estimation and AU12 Output of OpenFace
with different principal components. Error bar indicates the max and min of
MSE among the participants.
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Fig. 5. Cross Correlation between sensor-based method and AU12 Output
of OpenFace for each participant. The sensor data contains information about
smile intensity. By learning the results of OpenFace, the sensor-based method
can estimate the smile intensity to the same level as OpenFace.

B. How different is the sensor data and OpenFace output?

These results show a strong correlation between OpenFace
and sensor data. However, there are cases where the output
of OpenFace differs from the sensor-based estimation. For
cases where the difference was detected by a peak detection
algorithm, we compared the pros and cons of sensor data
over OpenFace output through a qualitative analysis and a
human annotation comparison. To understand the differences
between OpenFace and sensor-based estimation, we extracted
data points that differed in trend, not instantaneous differences,
by using a low-pass filter and peak detection.



Fig. 6 shows an example of a change in sensor values,
OpenFace outputs, their low-pass outputs, and the sequences
of facial expressions at that time. From the sensor-based
estimation, some participants showed strong blinking and
movements of facial muscles around the nose (e.g., AU10) that
were not associated with smile intensity. These noises occurred
in a higher frequency band than the temporal changes in sensor
values caused by smiling movements. Therefore, we applied a
low-pass filter to the estimation so that high-frequency bands
above 10 Hz were attenuated. The same procedure was applied
to the OpenFace output when detecting peaks to ensure data
processing consistency.
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Fig. 6. A 10 Hz low-pass filter was used to remove blinks and irrelevant
movements.
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OpenFace is zero or close to zero — the prediction was not
accurate. On the contrary, the sensor-based estimation can still
make predictions as the device is worn. This indicates that
the sensor-based estimates are more reliable than OpenFace in
such cases. Therefore, we excluded them from the subsequent
analysis as outliers.

We analyzed the data qualitatively. We applied the unsu-
pervised clustering method (k-means) to classify 132 samples
(135 minus outliers) into five classes. Heuristics using the
elbow method determined the number of classes. As humans
change how they perceive facial expressions depending on
dynamic perceptions, we designed the features to consider
the temporal changes. We used 6-dimensional features: the
OpenFace estimates, the sensor estimates, each data point
before and after ten frames.

The left figure is a two-dimensional representation of the
six-dimensional features with their first and second principal
components. The right figure shows the axes of the estimated
values from the sensors and the output from OpenFace. For the
color selection of the visualization, we used Colorgorical [42].
Fig. 9 shows the representative image for each class, with the
data points for each image closest to the centroid of each class
in k-means clustering.
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Fig. 7. Examples of gaps in the OpenFace detection are smoothly detected
by the wearable sensor.

We applied the peak detection algorithm (using Scipy [41],
prominence=10, i.e., 0.5 on average in the time window,
width=1) to the time series of the absolute sum of the
differences within a time window of 20 frames. Then, we
extracted the maximum difference points between OpenFace
output and the sensor-based estimates from each detected peak
width. Finally, we excluded the data points determined to
be non-smile (i.e., estimated value of less than 1) by both
methods, resulting in 135 samples from 12 users.

We identified two cases in which the sensor-based estimates
and OpenFace were extremely different (Fig. 7). The first is the
case where the face could not be detected due to head motion
(2 samples), as shown at the top of the figure, and the second
is the case where the face was partially occluded by a hand
(1 sample). In these cases, we can infer from the temporal
contexts that the smiling state continues, but the output from

Fig. 8. The five categorical classes using k-means clustering.
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Fig. 9. Representative images for each class.

TABLE I
THE AVERAGE ESTIMATES FOR EACH CLASS.
Class 0 1 2 3 4
Sensors 1.84 093 185 275 140
OpenFace | 2.53 1.6 1.04 205 0.69

The Table I shows the average estimates from OpenFace
and the sensors for each class. Fig. 9 shows the representative
images. They illustrate the differences in characteristics that
the two methods measure. The five classes fall into two main
patterns: cases where the sensor estimate is less than the
OpenFace (class 0 and 1) and cases where the sensor estimate
is greater than the OpenFace output (class 2, 3, and 4). Class



0 included intense smiles showing teeth at the onset. The class
also included the activities of other facial action units and head
movements that influenced the estimation results. With head
movements, the proportion of mouth in the face tended to be
more prominent, depending on the light exposure and the angle
of the face. The smiles in Class 1 are more pronounced around
the mouth than around the eyes. Class 2 and 4 included closed-
mouth smiles and chuckles shown at the offset of smiles.
Class 4 also included a small smile at the onset. Class 3 has
big smiles showing the teeth, but the sensor-based estimates
showed higher intensity than OpenFace.

C. Human Annotation Comparison

We collected a human annotation to examine which auto-
matic facial recognition method, the sensor-based or Open-
Face, better reflected the smile intensity of facial movements
annotated by laypersons. Four Japanese people (2 males, 2
females) volunteered to annotate by answering the questions
on the implemented program from their personal computers.
All participants had normal vision or corrected-to-normal
vision, and they reported that they had no difficulty in reading
facial expressions. The annotation program was web-browser
based, and implemented using the javascript-based jsPsych
library [43]. To save the annotation cost, we focused on data
points within 30 frames before and 60 frames after the laughter
reactions, the scenes where people smiled frequently. Also,
we assumed that data points from the same person in the
same class would have similar characteristics, so we selected
a maximum of five data points from each class of each
participant in order of the largest estimation error. Overall,
we used 83 data points for the annotation.

Since the annotators were not trained, we created a smile
intensity scale of facial movements, see Fig. 10, for each
individual in the dataset, which consisted of a series of images
for different smile intensity levels to establish a clear criterion
for the smile intensity assessment. The images were those in
which the sensor-based estimation and OpenFace outputs had
small error less than 0.1). We consider the intensity from the
images were close to human annotated smile intensity of facial
movements, as the sensors and OpenFace agreed. The scale
has a five-step intensity, ranging from 0.5 to 2.5, where the
corresponding smile intensity was present in all experimental
participants. We used the face_recognition' program based on
dlib library [44] to extract facial area, exclude closing eyes,
and enlarge and adjust the brightness to increase visibility.
Fig. 10 is an example of the smile intensity scale.

The annotation procedure was as follows. First, the overall
process was explained, and the consent was obtained. Next,
the following procedure was repeated for all the data points.
The annotators were allowed to play the video only once to
measure immediate impressions. The order of the videos was
randomized. The videos did not include audio.

1) The annotators watched two seconds videos that ended
at the images corresponding to one of the 83 data points.

Uhttps://github.com/ageitgey/face_recognition by Adam Geitgey

Fig. 10. An example of smile intensity scale used for human annotation
experiment. The images are retrieved when the sensor-based estimation and
OpenFace output matched.

2) They rated the impression of smile intensity of facial
movements in the last frame of the video, referring to
the scale mentioned earlier. The rating ranges with an
eleven-level Likert scale, including five images of the
scale and the middle and before and after.

3) They rated how natural and genuine they perceived those
smiles with a five-step Likert scale from their video
impression.

D. Results

There was a high correlation (r=0.82) between the an-
notated smile intensity of facial movements and perceived
smile genuineness. The correlations between the smile inten-
sity/genuineness and the sensor-based estimates and OpenFace
output were 0.67/0.56 and 0.59/0.36, respectively. The mean
absolute error between the average human intensity score
and each method was 0.37 for the sensors and 0.48 for CV
estimation. Then, we considered a simple error optimization
equation to combine the sensor and CV estimation results
under the constraint that the matched parts are not affected
as follows: sensor x (1 —«)+ CV %« subject to 0 < aw < 1.
This shows a minimum error of 0.29 when alpha is 0.34.
The correlations between the smile intensity/genuineness and
combined estimation was 0.74/0.56. The results for each class
also showed that in Class 4, 92% of the data were closer to
the results estimated from the sensor data to human annotation
than those of OpenFace. This means the method using optical
sensors can estimate the smile intensity better than the CV
method, especially in the case of closed-mouth smiles, such
as a giggle and subtle smile.

E. Case Study: Smile Dynamics Analysis using Sensors

The sensor-based results trained with the CV-based ap-
proach outcome showed that the smile intensity estimation
method is reliable. This section further examines the potential
of sensor-based estimation by observing the data in detail.
We focus on the relationship between the smile synchronicity
among users and the maximum rate of increase in smile
intensity using these estimation results.

First, at a given time, ¢, we define the change in the smile
intensity estimated by the sensor over the previous ten frames
as the smile change rate at t. Fig. 11 shows the smile change
rate before and after laughter reaction onsets for all smile
scenes, cropped and averaged, and arranged in time series for
each user. The onset of laughter reactions is fixed to the 60th
frame, and the smile change rate at that frame is the data



calculated from frame 51 to frame 60. This figure shows that
the smile change rate increases roughly from the onset of the
reactions and peaks at the 81.5 frame (SD =2.90) on average.
This trend is observed for all users. The laughing reactions
accelerated the smile intensity of those who watched the video.
We used these onsets as reference points of the video stimulus.
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Fig. 11. Smile intensity dynamics on average estimated from wearable optical
sensors. A red vertical line indicates the onset of the laughter reactions.

Next, we used these reference points to examine the rela-
tionship between the smile change rate and smile intensity
dynamics among the participants in the dataset. The estimated
smile intensity in the 60 frames before and after each laugh
reaction was used to calculate and average the correlations
for all 12 pairs. We took this as an indicator of the degree of
synchronization of the smile dynamics among subjects. Fig. 12
maps these data and the maximum rate of smile change in
this interval. From this figure, the higher the degree of syn-
chronization of smile, the higher the maximum smile change
rate for all participants (Coefficient of determination: 0.57).
This result indicates that many subjects laughed similarly if
the rate of increase in smile intensity was high. This ability
of wearable devices to dynamically estimate and analyze the
intensity of such smiles has the potential in examining the role
of smiles in social situations such as daily communications and
collaborative tasks and understanding its mechanism.
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Fig. 12. Smile synchronicity analysis for wearable optical sensors. The higher
the degree of synchronization of the smile, the higher the maximum smile
change rate for all participants.

V. DISCUSSION AND FUTURE WORK

The trained sensor-based estimation has high correspon-
dence (r =0.923) with AU12 intensity estimated from Open-
Face. This indicates that the optical sensor-based method can

estimate the smile intensity consistently without manual an-
notation by learning the OpenFace output. We also confirmed
that sensor-based estimation is closer to human annotation
than OpenFace and that the best estimation result was the
combination of the two. This suggests that the accuracy and
applicability of the method could be improved in two ways:
1) using the sensor data results to fine-tune the image-based
results, and 2) calibrating the sensor data results from the
image-based results and using them in more realistic scenarios.

The OpenFace output was unstable when the lighting en-
vironment or the position of the face changed. For example,
even if changes in facial expression could not be observed,
the OpenFace output increased when the size of the mouth
relative to the face increased due to face angle change. Further-
more, OpenFace did not detect the subtle smiles that sensor-
based estimation could catch. Hence, a future challenge is
understanding the sensor characteristics by directly comparing
sensor values and human annotations as a ground truth. Also,
in the present dataset, few factors could be considered noise
for the optical sensors other than head motion and blinks. The
participants did not move their mouths for conversation and
did not show facial movements associated with other emotions,
such as AU9 (Nose Wrinkler) and AU10 (Upper Lip Raiser).
We would like to validate the wearable method in more natural
interactions. When several categories of facial expressions are
present, the facial expression recognition method [13] may be
applied beforehand to accommodate noise factors for enhanced
smile intensity estimation.

We did not distinguish laughs from smiles in this work.
The annotators’ perception of smiles might be affected by
the presence of laughter. Future work should investigate the
influence of other body movements associated with laughter on
the perception of the intensity of smiles as a facial expression.
Also, future work should explore whether our results will hold
valid for other people than Japanese participants.

VI. CONCLUSION

We presented a wearable-based method to continuously
estimate smile intensity using optical sensors without manual
annotation. The method can output intensity estimates match-
ing between the state-of-art CV method (OpenFace) and sensor
data, when trained with a linear regression. The results showed
the method can output estimates even in situations where
the facial expressions cannot be recognized by OpenFace.
When the two estimation methods output different intensity
levels, human annotated smile intensity was closer to that of
the sensors than to OpenFace. This showed the potential of
the wearable method in estimating smile intensity dynamics.
Furthermore, we analyzed the relationship between the rate of
change of smile intensity and the degree of synchronization
of smile intensity dynamics. When the participants smiled
synchronously based on the canned laughter in the stimuli,
they showed more intense smiles. These methods would be
helpful in understanding the synchronization of smiles in more
realistic social interactions such as face-to-face communica-
tion.
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